

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 1

International Journal of Allied Practice, Research and Review
Website: www.ijaprr.com (ISSN 2350-1294)

Energy Efficient Resource Management in

Vertualized Data Centers with Dynamic

Consolidation

Aruna Singh and Dr.Vivek Panwar

GRD Institute of Management and Technology, Dehradun, Uttarakhand

Abstract - This paper presents novel systems, models, calculations, and programming for conveyed dynamic

combination of Virtual Machines (VMs) in Cloud server farms. The objective is to enhance the usage of

registering assets and lessen vitality utilization under workload free nature of administration imperatives.

Dynamic VM union influences fine-grained changes in the application workloads and ceaselessly reallocates VMs

utilizing live relocation to minimize the quantity of dynamic physical hubs. Vitality utilization is decreased by

progressively deactivating and reactivating physical hubs to take care of the present asset demand. The proposed

methodology is circulated, adaptable, and proficient in dealing with the energy-performance trade-off.

Keywords—Dynamic consolidation, Energy performance, Virtual machines, Resource management

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 2

 I. INTRODUCTION

 ENERGY CONSUMPTION BY COMPUTING OFFICES RAISES DIFFERENT MONEY RELATED, NATURAL

AND FRAMEWORK EXECUTION CONCERNS. A LATE STUDY ON POWER UTILIZATION OF SERVER RANCHES

[1] DEMONSTRATED THAT IN 2005 THE POWER USE BY SERVERS AROUND THE WORLD – INCLUDING

THEIR RELATED COOLING AND HELPER GEAR – COST 7.2 BILLION DOLLARS. THE CONCENTRATE

ADDITIONALLY SHOWS THAT THE POWER UTILIZATION IN THAT YEAR HAD MULTIPLIED CONTRASTED

WITH THE UTILIZATION IN 2000. PLAINLY, THERE ARE ECOLOGICAL ISSUES WITH THE ERA OF POWER.

THE QUANTITY OF TRANSISTORS COORDINATED INTO TODAY'S INTEL ITANIUM 2 PROCESSOR COMES TO

ABOUT 1 BILLION. IN THE EVENT THAT THE TRANSISTOR THICKNESS PROCEEDS TO DEVELOPMENT, THE

WARMTH (PER CM2) CREATED BY FUTURE PROCESSORS WOULD SURPASS THAT OF THE SURFACE OF THE

SUN [2]. THE EXTENT OF ENERGY PROFICIENT CONFIGURATION IS NOT CONSTRAINED TO PRINCIPLE

FIGURING PARTS (E.G., PROCESSORS, STOCKPILING GADGETS, AND PERCEPTION OFFICES), YET CAN

VENTURE INTO A MUCH BIGGER SCOPE OF ASSETS CONNECTED WITH COMPUTING OFFICES INCLUDING

HELPER HARDWARE, WATER UTILIZED FOR COOLING, AND EVEN THE FLOOR SPACE INVOLVED BY THE

ASSETS.

 While late advances in equipment innovations including low-control processors, strong state

drives, and energy effective screens have lightened the energy utilization issue to a specific degree, a

progression of programming methodologies have essentially added to the change of energy

proficiency. These two methodologies (equipment and programming) ought to be seen as

corresponding instead of aggressive. Client mindfulness is another non-irrelevant component that

ought to be considered when talking about Green IT. User awareness and behavior in general

extensively influence figuring workload and asset use designs. This, thus, has an immediate

association with energy utilization of center computing assets as well as assistant hardware, for

example, cooling/ventilating frameworks [3]. For instance, a PC program created without giving

careful consideration to its energy proficiency may prompt unreasonable energy utilization and may

add to higher warmth discharge bringing about expansions in the energy expended for cooling.

Generally, power-and energy proficient asset administration methods were connected to cell

phones. It was directed by the way that such gadgets are typically battery fueled, and it is vital to

apply power and energy administration to enhance their lifetime. Be that as it may, because of the

ceaseless development of power and energy utilization by servers and server farms, the center of

power and energy administration methods has been changed to such frameworks. Despite the fact

that the issues brought on by high power and energy utilization are interconnected, they have their

specifics and must be considered independently [4]. The distinction is that top power utilization

decides the expense of the base required to keep up the framework operation, while energy

utilization represents power bills.

The objective framework is an IaaS situation, spoke to by a huge scale server farm comprising of

N heterogeneous physical nodes. Every node i is described by the CPU execution characterized in

Millions Instructions per Second (MIPS), measure of RAM and system transfer speed. The servers

don't have direct-appended capacity, while the capacity is given by a Network Attached Storage

(NAS) or Storage Area Network (SAN) to empower VM live mitigation. The sort of nature suggests

no learning of utilization workloads and time for which VMs are provisioned [5]. As it were, the

asset administration framework must be application-rationalist [6].

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 3

Objectives of the thesis are as follows:

 To Solve trade-off between energy savings vs. delivered performance

 To determine when which and where to migrate VMs in order to minimize energy consumption,

minimize migration overhead and ensuring SLA

 To develop efficient decentralized and scalable algorithms for resource allocation

 To develop comprehensive solution by combining several allocation policies with different

objectives

I. DESIGN OF PROPOSED WORK

We now show the center VM administration instruments and algorithms of proposed work.

Proposed work gives a comprehensive energy administration answer for IaaS mists by coordinating

VM asset usage observing and estimations, underload/Overload moderation components, and VM

combination, lastly control administration inside one framework. Power administration is utilized to

move unmoving PMs into a power saving state amid times of low use. In this area to start with, the

documentations and measurements are presented. At that point, we depict the VM asset usage

observing and estimation, VM dispatching and situation, LC Overload and underload alleviation,

movement plan authorization, lastly the power administration components [7].

a. Notations and Metrics

Let LCs indicate the plan of LCs and VMs the plan of VMs, with n = jLCsj and m = jVMsj

representing to the measures of LCs and VMs, separately. Accessible assets, CPU, memory, system

Rx, and system Tx are a piece of the set R with d = jRj (d = 4). VM CPU usage is measured in rate

of the aggregate LC limit. For instance, if a LC has four physical centers (PCORES) and a given VM

requires two virtual centers (VCORES), the most extreme CPU prerequisite of the VM would be

half. Memory is measured in KiloBytes and system use in Bytes/sec [8].

VM is represented to by its asked for and utilized limit vectors (RCv resp. UCv). RCv: = {RCv,

k} 1<k<d mirrors the VM asset necessities at accommodation time. Every vector part characterizes

the asked for limit for asset k 2 R. The utilized limit vector UCv: = {UCv,k}1<k<d contains

evaluated VM asset use at a given time. It is registered in light of the checked VM asset usage. LCs

is allocated with static and utilized limit vectors. The static limit vector represents to the aggregate

sum of assets accessible on a LC l. It is characterized as Cl: = {Cl, k} 1<k<d.

b. Resource Monitoring and Estimations

VM and LC asset usage changes after some time. So as to bolster VM administration choices, for

example, VM dispatching, position, underload/Overload alleviation, and VM solidification, VMand

LC checking is performed at all layers of the framework. At the processing layer VMs are checked

and VM asset usage is intermittently exchanged by the LCs to the doled out GM [9].

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 4

At the administration layer, GMs occasionally send outline data to the GL. GM outline data

incorporates the accumulated asset use for all the LCs a GM oversees. Accumulated asset use

catches the aggregate dynamic, detached, asked for and utilized limit of a GM. Accumulated asset

use is utilized by the GL to manage VM to GM dispatching choices. Dynamic and uninvolved limits

are static vectors that represent to the aggregate sum of LC assets accessible on dynamic (resp.

uninvolved) LCs. Dynamic and detached LCs are nodes which are fueled on (resp. power-cycled).

Dynamic and aloof limit vectors are figured by summing up the Cl vectors of all the fueled on (resp.

power-cycled) LCs [10].

c. VM Dispatching and Placement

At the point when a customer endeavors to submit VMs to the GL, a dispatching plan is utilized

to disseminate them among the GMs. For instance, VMs could be conveyed in a limit considered

round robin or first-fit design. A dispatching plan takes as information the submitted VMs and the

rundown of accessible GMs including their related totaled asset usage information and yields a

dispatching plan which determines the VM to GM assignments. Especially, the dispatching approach

appoints sets of VMs to GMs. Need is given to dole out VMs to GMs with enough accessible

dynamic limit keeping in mind the end goal to minimize the quantity of latent LCs to be woken up

by the GMs amid VM situation. Note, that totaled asset use is not adequate to take precise

dispatching choices. Case in point, when a customer presents a VM asking for 2GB of memory and a

GM reports 4GB accessible it doesn't important imply that the VM can be at long last put on this

GM as its accessible memory could be circulated among different LCs (e.g. 4 LCs with every 1 GB

of RAM). Thus, a rundown of hopeful GMs is given by the VM dispatching strategy. In light of this

rundown, a straight inquiry is performed by the GL amid which it sends VM plan solicitations to the

GMs [11].

d. Overload and Underload Mitigation

Because of the fluctuating VM asset utilization and the framework's capacity to overcommit

assets, asset dispute can happen when the accumulated asset usage of the VMs surpasses the

aggregate LC limit, the supposed Overload condition. Also, for energy effectiveness reasons, once a

LC has gotten to be unmoving (i.e. underloaded) it could be transitioned into a lower power-sharing

state to spare energy. Keeping in mind the end goal to handle both cases, proposed work

incorporates Overload and underload moderation instruments which include the location and

determination of Overload (resp. underload) circumstances [12].

The Threshold Crossing Detection (TCD) system characterizes two limits: 0 < MINk < 1 and 0 <

MAXk < 1 for every asset k and applies them on the utilized LC limit vector. In the event that the

assessed asset usage for no less than one k falls underneath MINk the LC is considered as

underloaded, generally if it goes above MAXk, the LC it is hailed as Overload.

Algorithm 1: VM overload mitigation

Input: Overloaded LC with the associated VMs and resource utilization vectors UC, list of

destination LCs

Output: Migrating Plan MP

c ← Estimate used LC capacity

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 5

m ← Compute static LC capacity

o ← Compute the amount of overloaded capacity (c, m)

VMssource ← Get VMs from LC

Sort VMsource in increasing order

VMcandidates ← computeMigrationCandidates(VMssource, o)

Sort destination LCs in increasing order

for all v  VMcandidates do

LCfit ← Find LC with enough capacity to host v (v, LCs)

if LCfit = Ø then

continue;

end if

Add (v, LCf it) mapping to the MP

end for

return MP

The underload mitigation algorithm is appeared in Algorithm 2. As opposed to the Overload

alleviation algorithm, the underload relief does not require to process a VM movement hopeful set.

Rather, the algorithm takes after a major or bust methodology in which possibly all or none of the

VMs executing on a node are moved.

Algorithm 2: VM underload mitigation

Input: Underloaded LC with the associated VMs and resource utilization vectors UC, list of

destination LCs

Output: Migration Plan MP

VMcandidates ← Get VMs from underloaded LC

Sort VMcandidates in decreasing order

Sort LCs in decreasing order

for all v  VMcandidates do

LCfit ← Find LC with enough capacity to host v

if LCf it = Ø then

Clear MP

break;

end if

Add (v, LCf it) mapping to the MP

end for

return MP

e. VM Consolidation

While such components are surely essential to determine underload and Overload circumstances,

asset discontinuity can in any case happen because of contrasts in VM asset requests when nodes are

neither underutilized nor Overload. In Proposed work every GM coordinates a VM combination

motor which can be empowered by the framework manager to occasionally play out these

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 6

undertakings. Union is performed by GMs simultaneously and autonomously inside their plan of

PMs [13]. Note, that VM solidification has an expense as far as both energy and execution (i.e.

execution time) on the general framework (resp. applications inside the VMs). Thus, picking the

suitable interim is vital so as to accomplish both, energy investment funds and constrained effect on

application execution. The pseudo code of the adjusted algorithm is appeared in Algorithm 3.

Algorithm 3: VM consolidation

Input: List of LCs with their associated VMs and resource utilization vectors UC

Output: Migration Plan MP, nUsedNodes, nReleasedNodes

MP ← Ø

nUsedNodes ← 0

nReleasedNodes ← 0

localControllerIndex ← |LCs| - 1

while true do

if localControllerIndex = 0 then

end if

Sort LCs in decreasing order

LCleast ← Get the least loaded LC (localControllerIndex)

VMsleast ← Get VMs from LCleast

if VMsleast = Ø then

localControllerIndex ← localControllerIndex - 1

end if

Sort VMsleast in decreasing order

 nPlacedVMs ← 0

for all v  VMsleast do

Find suitable LC to host v

if LC = Ø then

end if

LCleast ← LCleast Ụ {v}

Add (v, LCleast) mapping to the MP

nPlacedVMs ← nPlacedVMs + 1

end for

if nPlacedVMs = |VMsleast| then

nReleasedNodes ← nReleasedNodes + 1

else

Remove VMsleast from LCleast and MP

end if

localControllerIndex ← localControllerIndex - 1

end while

 nUsedNodes ← |LCs| - nReleasedNodes

return MP, nUsedNodes, nReleasedNodes

The algorithm receives the LCs including their related VMs. LCs are initially sorted in

diminishing request in view of their utilized limit. A short time later, VMs from the minimum

stacked LC are sorted in diminishing request, set on the LCs beginning from the most stacked one

and added to the migration plan.

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 7

f. Migration Plan Empowerment

Overload and underload relief and in addition VM solidification algorithms yield a mitigation

plan which determines the new mapping of VMs to LCs. This mapping is utilized by proposed work

to move the framework from its current to the enhanced state. The movement plan is implemented

just in the event that it possibly yields less dynamic LCs. Implementing the movement plan figured

is clear as it just includes moving VMs from their present area to the given one. Note that our

algorithms don't present any successive conditions or cycles of VM mitigations. Especially, VMs are

moved to a LC if and just if enough limit is accessible on it without requiring different VMs to be

moved away first.

g. Power Management

In order to save energy, idle nodes should be transitioned into a lower power state after the

mitigation plan implementation. In this way, proposed work coordinates a power administration,

which can be empowered by the framework head to occasionally watch the LC use and trigger

power saving activities once they get to be unmoving. The accompanying power saving activities

can be empowered if equipment backing is accessible: shutdown, suspend to smash, plate, or both.

LCs are consequently transitioned into a lower power state after a predefined unmoving time limit

has been come to (e.g. 180 sec) and marked as passive.

In this connection two viewpoints are essential: (1) a period interim should be characterized to

advise the GM for to what extent it needs to hold up until it can endeavor to begin VMs on the

woken up LCs; (2) all together for the GM to effectively begin VMs on the woken up LCs, LCs must

be allotted to the very same GM which set off the wake ups. To empower the previous angle a

framework executive configurable wake up timeout exists on every GM. To bolster the last

perspective, the GL is intended to allocate LCs to the same GM which set off the wake up.

II. RESULTS

Results of our proposed technology will be like following below figures:

Fig.1: Add PM in list of LCs

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 8

Fig.2: Browse the request file and process the request using ST method

Processing using ST:

Table 1: Simulation time 1, Task arrived: 0 processing using ST

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

0.0 0.0 0.0 0.0

Allocating to least loaded PM: 1

Table 2: Simulation time 2, Task arrived: 1 processing using ST

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

60.0 0.0 0.0 0.0

Allocating to least loaded PM: 2

Table 3: Simulation time 3, Task arrived: 2 processing using ST

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

60.0 30.0 0.0 0.0

Allocating to least loaded PM: 3

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 9

Table 4: Simulation time 7, Task arrived: 5 processing using ST

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

60.0 30.0 40.0 30.0

Allocating to least loaded PM: 2

0 has completed execution in 1, Migrating VM 5 from 1 to 0

Table 5: Simulation time 9, Task arrived: 10 processing using ST

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

100.0 90.0 40.0 30.0

Allocating to least loaded PM: 4

Migrating VM 5 from 0 to 2, Migrating VM 1 from 1 to 2

Fig.3: Browse the request file and process the request using MM method

Processing using MM:

Table 5.6: Simulation time 1, Task arrived: 0 processing using MM

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

0.0 0.0 0.0 0.0

Allocating to least loaded PM: 1

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 10

Table 5.7: Simulation time 7, Task arrived: 5

Load

at PM 1

Load

at PM 2

Load

at PM 3

Loa

d at

PM 4

60.0 60.0 30.0 40.0

Allocating to least loaded PM: 3

0 has completed execution in 1, Migrating VM 5 from 2 to 3

Performance evaluation:

Fig.4: Comparison graph for energy consumption in % between ST and MM

Fig.4 presents the comparison graph of energy consumption of two approaches i.e. ST and MM.

It shows that as the number of requests increases energy consumption increases in ST method as

compared to MM which depicts that MM is better approach than ST

Fig.5: Comparison graph for Average SLA violation in % between ST and MM

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 11

 Fig.5 presents the comparison graph of average SLA violation of two approaches i.e. ST and

MM. It shows that as the number of requests increases SLA violations increases in ST method as

compared to MM which depicts that MM is better approach than ST.

III. CONCLUSIONS

Cloud computing has made the vision of figuring assets as a utility another progression nearer to

the truth. As the innovation advances and system access turns out to be quicker and with lower

inactivity, the model of conveying processing control remotely over the Internet will multiply. The

proposed approach enhances the use of server farm assets and diminishes energy utilization, while

fulfilling the characterized QoS prerequisites. Notwithstanding the multifaceted nature of actualizing

element VM combination, IaaS Clouds being the objective situations infer additional necessities, for

example, fulfilling workload free QoS requirements and conveyed design of the VM administration

framework to give versatility and wipe out single purposes of disappointment.

The theory has closed with a discourse of potential advantages of randomized online algorithms.

Another conclusion has been that genuine workloads regularly show interrelations between resulting

workload states; in this way, dynamic VM solidification algorithm can be enhanced by expecting

that future workload states can be anticipated to some degree in light of the historical backdrop of

the watched framework conduct.

IV. REFERENCES

[1] A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya, “Deploying Open-Stack on CentOS using the KVM hypervisor and

GlusterFS cloud file system,”CLOUDS-TR-2012-3, CLOUDS Laboratory, The University of Melbourne, Australia, Tech. Rep., 2012.

[2] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design techniques for system-level dynamic power management,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3, pp. 299–316, 2000.

[3] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli, “Policy optimization for dynamic power management,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 813–833, 1999.

[4] M. Blackburn, “Five ways to reduce data center server power consumption,” The Green Grid, Tech. Rep., 2008.

[5] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for managing SLA violations,” in Proceedings of the

10th IFIP/IEEE International Symposium on Integrated Network Management (IM), 2007, pp. 119–128.

[6] G. Bolch, Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley-

Blackwell, 2006.

[7] A. Borodin and R. El-Yaniv, Online computation and competitive analysis. Cambridge University Press, New York, 1998, vol. 53.

[8] G. Buttazzo, “Scalable applications for energy-aware processors,” in Embedded Software, ser. Lecture Notes in Computer Science, A.

Sangiovanni-Vincentelli and J. Sifakis, Eds. Springer Berlin Heidelberg, 2002, vol. 2491, pp. 153–165.

IJAPRR International Peer Reviewed Refereed Journal, Vol. III, Issue VII, p.n.01-12, July, 2016 Page 12

[9] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of data center resources for Cloud computing: A vision,

architectural elements, and open challenges,” in Proceedings of the International Conference on Parallel and Cloud Processing

Techniques and Applications (PDPTA), 2010, pp. 1–12.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya, “CloudSim: A toolkit for modeling and simulation of

Cloud computing environments and evaluation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no.

1, pp. 23–50, 2011.

[12] M. Cardosa, M. Korupolu, and A. Singh, “Shares and utilities based power consolidation in virtualized server environments,” in

Proceedings of the 11th IFIP/IEEE International Symposium on Integrated Network Management (IM), 2009, pp. 327–334.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live migration of virtual machines,” in

Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2005, pp. 273–286.

