

IJAPRR Page 60

International Journal of Allied Practice, Research and Review
Website: www.ijaprr.com (ISSN 2350-1294)

The Hotspot Java Virtual Machine: Memory and

Architecture

Prof. Tejinder Singh
Assistant Professor, Deputy Dean IRP of Baba Farid College, Bathinda (Punjab)

E-Mail: tejinder31.singh@gmail.com

Abstract - In this paper is providing information about JVM Architecture and memory etc. The new compiler named

GALADRIEL starts from Java class filesproduced from the initial Java specification and processes the system information in

order to exploit the concurrency implicit in each method. This paper describes our experience in porting Compaq's Fast VM

from the Alpha processor architecture to the Intel x86 processor architecture. Although the JVM is a great target for the Java

TM programming language, it is not necessarily a good platform for other languages. Java for its portable byte codes and

extensive libraries, but prefer a different language, especially for scripting.

Keyword: Java; JVM; Memory; Architecture.

I. Introduction

The Java™ programming language is a usual purpose, synchronized, objects oriented Programming language.

The JVM is the foundation of the Java platform. There is the element of the technology accountable for its

hardware- and operating system independence, and its tiny size of the compiled code, and its facility to defend

users from mischievous programs. The first prototype implementation of the JVM (Java Virtual Machine),

completed by Sun Microsystems, Inc., matched the Java virtual machine coaching usual in software presented

by a handheld device that be similar to a existing Personal Digital Assistant (PDA). Oracle's current

enactments emulate the Java virtual machine on handheld, PC and Super computers devices, but the Java

virtual machine is not accept any specific execution technology, host hardware, or host operating system. [1].

II. The Java Technology

Each Java class of a given application is compiled to a virtual machine designated by JVM (Java Virtual

Machine) [3]. The compilation results of each Java class reside in a file named Java class file which contains

a constant pool (with symbolic references, constant strings, and information about the class) and the byte

codes for each method, among other information [3]. The JVM has about 200 instructions that can be

distributed over 30 functionality type groups and each instruction has an 8-bits opcode. The JVM is stack-

oriented, with an operand’s stack and local variables for each method. The operations get values from the

operand stack and store the result in it. The operand stack is also used to pass arguments to methods and to

[Type text] Page 61

receive the return result from a called method. There are instructions to transfer word contents from/to the

local variables to/from the operand stack, instructions related to the manipulation and creation of objects,

arrays, and the information encapsulated within it, control-flow instruct.

III. JVM Architecture

A Java virtual machine (JVM) is a virtual machine that can execute Java byte code. It is the code execution

component of the Java software platform. Sun Microsystems has stated that there are over 5.5 billion JVM-

enabled devices. In order to write and execute a software program you need the following.

1.Editor – To type your program into, a notepad could be used for this.

2.Compiler – To convert your high language program into native machine code.

3.Linker – To combine different program files reference in your main program together.

4.Loader – The loader can be copy files on your hard disk device like Flash Drive, CD into RAM for run.

The filling is mechanically done when your run your code.

5Execution – Genuine run the program code, if you need is cleared that by your Operating System and CPU.

1.1 JVM Architecture

Why is Java slow?

 Dynamic Linking = Unlike C, linking is done at run-time, every time the program is run in Java.

 Run-time Interpreter = the conversion of byte code into native machine code is done at run-time in

Java which furthers slows down the speed.

IV. JVM Memory Architecture

JVM one of important module of Java architecture and portion of the JRE (Java Runtime Environment).

There are provided the annoyed stage functionality to java. It’s a software procedure that transforms the

complier into Java byte code into machine code. Not a machine code just a byte code is an intermediate

language in the middle of Java source and the parent system. Greatest program design language like C and

Pascal exchanges the basis code into computer language such as machine code for unique detailed style of

instrument as the machine language differ from organization to organization. Mostly compiler produces code

for a particular system but Java compiler converts a source to machine it’s the structure can be used for a

virtual machine. JVM offers security to java.

[Type text] Page 62

1.2 JVM Memory 1

 Eden Space (heap): The group beginning which memory is initially allotted? For most objects.

 Survivor Space (heap): The group Containing objects that have continued. The garbage collection of the

Eden space.

 Ensured Generation (heap): The pool comprising objects that have existed for some time in the survivor

space.

 Permanent Generation (non-heap): The pool containing all the reflective data of the virtual machine

itself, such as class and method objects. Together Java VMs in order practice class data distribution, present

age group is separated interested in read-only and read-write areas.

 Code Cache (non-heap): The Hotspot Java VM also contains a code cache, containing memory that is used

for compilation and storage of native code.

1.3 JVM Memory 2

The heap that one is separated into three areas: Tenured (also called Old), Young (also called New), and

Permanent (Perm). The main motive last this is to type garbage collection more well-organized. Permanent

should never require collection (although you can configure it), Old should be rarely collected, and Young

will be collected a lot.

V. Heap Metrics

[Type text] Page 63

So how is the total memory distributed onto the different areas? The JVM offers us to keep track of a

lot of information on memory via JMX. For example, there is a good command line utility which shows you

the usage of all your spaces.

Syntax: jstat -gcutil <ProcessID>

D:\Tejinder>jstat -gc 0

1.4 JVM GC

VI. JVM Pros and Cons

A virtual machine is a layer of abstraction that gives a program one simplified interface for

interacting with a variety of physical computers and their operating systems.

 Security:Java virtual machine (VM) is that the virtual machine attempts to verify all programming before it

is executed on behalf of various movement and straight thoughtful faults inside a Java code is restricted to

the virtual machine's sandbox.

 Cross Platform: A tremendous advantage of the Java VM is that it allows a program to be written and

compiled only once, which then can be run on a wide variety of systems and operating systems without

modification. Many cell phones and embedded devices include a Java VM.

 Speed : Since programming must be translated from generic "byte code" to the machine code for the target

system as it is being run, it is unbearable for Java to complete as rapidly as languages that can converts into

machine code directly for the goal to systems.

 Platform Specific Features: Java VM must be execute continuously an extensive variability of systems;

structures definite to a single OS are frequently not applied into Java programs. In accumulation, the

"appearance and texture" of Java applications can regularly be moderately altered than the evasion styles of

native applications within an operating system.

VII. Future Work

There are 800,000 lines of C/C++ code in Sun’s JDK 1.6. We expect Robusta should be able to

sandbox most of JDK’s system libraries, as we have demonstrated for zip and libec. However, it is possible

that not all native libraries for system classes are suitable for Robusta because of restrictions related to

functionality or performance. Some system native libraries may need direct accesses to the JVM state. For

instance, a security manager accesses JVM’s method-call stack directly. Some system classes’ native libraries

may cross the boundary between the Java and native worlds so often that putting them into a sandbox would

have a significant performance penalty for the JVM; in these cases. On the other hand, it does not prevent

Exploits of vulnerabilities using code snippets already in the code region (e.g., return-to-libc attacks or return-

oriented programming). Control-Flow Integrity can foil a large number of attacks that are based on illegal

control transfers.

VIII. Conclusion

I have described the techniques used in order to provide an HW performance acceleration of Java

byte codes. The developed GALADRIEL compiler allows an Efficient front-end to HLS systems starting

from a system Java specification. Using the Java VM as a propagation vector for distributing dynamic

languages out to a large audience is a tempting goal. We've examined two difficulties with targeting dynamic

[Type text] Page 64

languages to the current Java VM: the overhead of boxing small data structures, and the mismatch between

the VM's Java-tuned instruction set and the requirements of dynamic languages. It appears that this extension

should have no performance impact on current Java programs. Native code has always been the security dark

corner of Java security.

IX. References

[1] "The Java™ Virtual Machine SpecificationJava SE 7 Edition", Tim Lindholm Frank Yellin, GiladBracha, Alex Buckley, 2012-07-

27, JSR-000924 Java™ Virtual Machine Specification ("Specification") Version: 7, 2011 Oracle America, Inc. and/or its affiliates.

[2] Tim Lind Holm and Frank Yellin. The Java Virtual Machine Specification.Addison-Wesley, Reading, Massachusetts, 1996.

[3] http://www.javatutorialhub.com/java-virtual-machine-jvm.html

[4] http://middleware7.blogspot.in/2012/08/Jvm-memory-architecture.html

[5] “Robusta: Taming the Native Beast of the JVM”, Joseph Siefers, Gang Tan, Greg Morrisett, CCS’10, October 4–8, 2010, Chicago,

Illinois, USA.

[6] “Towards an Automatic Path from Java Bytecodes to Hardware through High-Level”, João M P Cardoso, Horácio C Neto,In

Proceedings of the 5th IEEE International Conference on Electronics, Circuits and Systems, Lisbon, Portugal, September 7-10, 1998.

[7] “The Java™ Virtual Machine Specification Java SE 7 Edition”, Tim Lindholm, Frank Yellin, GiladBracha

Alex Buckley, 2012-07- 27, Oracle America, Inc. and/or its affiliates. All rights reserved. 500 Oracle Parkway M/S 5op7, California

94065, U.S.A.

[8] “Design and Performance Analysis of a Distributed Java Virtual Machine”, MinhaiSurdeanu and Dan Moldovan,

